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Summary

1 The methods commonly used to estimate stem turnover rates (i.e. mortality and
recruitment) in species rich tropical forests suffer from a previously unrecognized
artefact. The estimated rate is not independent of the census period.

2 An average rate estimate will decrease with time if the sample population cannot
be characterized as homogeneous. This artefact may have considerable significance
for comparisons between permanent plot studies that have used different census
periods.

3 We present a theoretical consideration of this census effect. The artefact will be
severe when a fraction of the population has a very much higher mortality rate than
the average.

4 Using a simple formulation we provide a mathematical proof that rate estimates
will decline with increasing census periods for all but perfectly uniform populations.
5 The phenomenon of apparent rate decrease may be used to provide ecologically
significant information about the diversity and dynamics of the population as it is
related to the variance of life expectancies within the sample.

6 Such an artefact complicates evaluation of change over nonstandard time intervals
and requires careful and detailed attention. Similar problems will effect any estimation
procedure which cannot account for all the rate variation within a study population.
Recognition of the problem is a necessary first siep.
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Introduction

Many ecological studies examine population changes
using census information gained by counting and later
re-counting a defined sample population and assess-
ing survivors, losses and gains (recruits). In tropical
forest studies such information is commeonly sum-
marized as rates of mortality, recruitment, or turnover
(e.g. Phillips ez al. 1994; Sheil et al. 1995). A previously
unrecognized artefact arises from evaluating mor-
tality and recruitment rates when census intervals are
unequal. It can be shown that estimated rates will
decline with increasing census interval as a conse-
quence of population heterogeneity.

Much of what is known about tropical forest
dynamics has been derived from census-based per-
manent plot data. The collection of such data sets is
difficult and expensive and there is little stan-
dardization of census periods. Comparative studies

have and are being made (e.g. Swaine et al. 1987a;
Hartshorn 1990; Phillips ef al. 1994), and conclusions
of considerable significance are being reached (e.g.
Phillips & Gentry 1994). The interpretation of such
comparative evaluations must remain unclear if rate
estimates are not independent of census period (Sheil
1995a). Artefacts associated with estimating rates in
heterogeneous populations may confound, or perhaps
cause much of the variation currently inferred from
tropical forest turnover studies. In this paper the
reasons for reaching this conclusion are presented.
Mortality and recruitment of trees can be very
irregular at small spatial and temporal scales (e.g.
Brokaw 1982), but it is nonetheless widely assumed
that when samples from large areas are recorded over
long periods the data allow the estimation of ‘vital’
rates (mortality and recruitment) which are charac-
teristic for that vegetation. Given the current interest
in studying permanent plots in order to examine many
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aspects of tropical forest ecology and management
(e.g. Hubbell & Foster 1992; Condit 1995) the identi-
fication and characterization of errors and artefacts
is essential (Sheil in press). Some issues relating to the
calculation and comparison of mortality rates have
been considered previously (Mervart 1972; Swaine &
Hall 1983; Lieberman ef al. 1985; Swaine & Lieb-
erman 1987; Rankin-de-Merona et al. 1990; Phillips
et al. 1994; Sheil er al. 1995; Sheil 1995a,b).

Simple stand level parameters such as annual mor-
tality and recruitment rates are likely to remain fun-
damental to the ecological description of forests gen-
erally. Even in temperate forests a satisfactory
understanding of tree mortality remains elusive as the
necessary quality of data is scarce (e.g. McCune &
Menges 1986). Hamilton (1986) introduces his study
of mixed conifer stands in northern Idaho with the
following observations: ‘Mortality remains one of the
least understood components of growth and yield esti-
mation.  Unfortunately, few studies have been
designed specifically to increase our understanding of
the mortality process. Little of the data collected for
other purposes can be readily used in the development
of mortality (or survival) models. In the absence of
adequate data, mortality appears to have been han-
dled by assumption or subjective judgment.’

The standard methods of mortality rate estimation
used in tropical forests are based on models which
assume a simple population in which each member
has an equal and constant probability of dying over
any unit of time thus giving an exponential decline
(c.f. radioactive decay). The issues raised by treating
heterogeneous populations in this way have not been
widely recognized. Such errors have been termed type
three artefacts by Sheil (1995b) being errors due not
to the method of data collection, nor to its impact
upon the sample population, but to occasions when
‘data are inappropriately manipulated, analysed
and/or assessed. . .. These artefacts usually arise from
a limited understanding of the data and systems under
examination, and often from the need to make unreal-
istic and unexamined simplifications’.

Apparent declines in vital rates

The estimation methods commonly used in tropical
forest studies will generally indicate a decline in mor-
tality rate with increasing census period in any popu-
lation that maintains a consistent variation in the
probabilities of loss of its individual members. This is
intuitively obvious, because the fraction of the sur-
viving sample members with high mortality rates will
decrease faster as ‘low-mortality’ survivors increase
in relative terms. We would argue that this situation
occurs in mixed species evaluations, and will also be
relevant within more superficially ‘homogeneous’
populations {e.g. mixed size or age classes, pheno-
typically differentiated populations, population mem-
bers in heterogeneous or competitive environments—

as is certainly the case in virtually all closed canopy
forests).

So far, we are aware of only two published exam-
ples of tropical tree mortality which appear to dem-
onstrate census-period dependence. Mervart (1972,
his figure 10) found that mortality in a predefined
population (i.e. only stems recorded at the first census
were followed) of Nigerian forest trees tended to
decrease with time. A similar result for trees in
Budongo Forest, Uganda, was presented by Sheil
(1995a). We can suggest two reasons why so few
observations of period dependence can be found in the
literature: the lack of recognition of the phenomenon;
and the paucity of suitable multicensus long-term
data.

A closely related phenomenon has previously been
recognized in failure rate analysis based on life-time
data (i.e. not census records) by Proschan (1963) who
examined the time between breakdowns in aircraft
air-conditioning systems: he suggested that ‘an
observed decreasing failure rate may well be the result
of mixing exponential distributions having different
parameters’ and provided a proof that the artefact will
occur in such circumstances. This ‘mixing exponential
distributions’ corresponds to cryptic subpopulations
having a different breakdown (‘mortality’) rate and is
thus closely analogous to the arguments presented
here.

Mortality

For the derivations and arguments which follow it is
useful to review briefly the mathematical form and
assumptions implicit in the methods commonly used
to estimate mortality rates in tropical forest studies.
For a population experiencing mortality of a constant
fraction m (1 2 m = 0) each year, the cumulative loss
after ¢ years compounds as

N, = No(1—m)’ ' M

N, and N, are population counts-at the beginning and
end of the measurement interval, ¢.
Thus m may be estimated as

m=1—(N,/No)"" @

Some studies of mortality in tropical forest have
indeed used this form (e.g. Primack et al. 1985).

The assumption of a common and constant prob-
ability of mortality throughout the entire population
is the basis of this model and allows confidence limits
to be generated by use of the inverse F distribution
(Johnson & Kotz 1970; Nelson 1982) as:

m, = 1_[1 - 1/{1 +F'inv[a= 2(N0_Nl)+2a 2NI]NI/
(No—N,+Dj1" 3
my=1—[1—1/{1+F[x, 2(1+N),

2(No—NDIN+ D/(No— NI “)
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Here m, is the upper confidence limit and m, is the
lower confidence limit on m. F,,&, numerator degrees
of freedom, denominator degrees of freedom) gives
the inverse of the F cumulative probability dis-
tribution at a confidence level defined by a. Although
based entirely on the assumption of constant and
equal probabilities of mortality this formulation pro-
vides some gunidance to the comparisons of rate infor-
mation.

A commonly used alternative to the calculation of
m is to estimate the instantaneous or ‘exponential’
rate measure, A (e.g. Swaine & Hall 1983; Manokaran
& Kochummen 1987; Lieberman et al. 1990; Clark &
Clark 1992; Condit ez al. 1993; Milton et al. 1994),
which considers. continuous, rather than discrete,
time. This estimate derives from the differential equa-
tion:

dN/dt = —JN. )

This integrates to give the standard exponential
relation

N, = Nye ¥ ©)

In what foliows we consider the two forms of rate
estimation, m and A, separately but it should be recog-
nized that the estimates are related independently of
time as m = 1 —e~* (see Sheil ez al. 1995).

The simplest method of rate calculation is linear,
ie. percentage lost divided by time {‘m’ =
1/t [(No—N,)/No]} and this is sometimes encountered
in the literature (e.g. Busing & Pauley 1994).
This rough approach ignores the compounding
required for any period not identical to one year and
will be biased for any comparisons over unequal cen-
sus periods. The expected rate estimate will thus
decrease with increasing census interval even for sim-
ple homogeneous populations. This method is not
considered further.

A GENERALIZATION FOR COMPOSITE
POPULATIONS

In a mixed population composed of subpopulations,
each with a different mortality rate, a generalization
of eqn 1 is required. Each subpopulation, i, is char-
acterized by its own annual mortality, »;, and its own
population of stems:

N, = i n, = i mioll — my)' 0

i=1 i=1

Here n, and n;, are the counts of subpopulation mem-
bers at time 0 and survivors at time ¢, respectively.

Using the conventional mortality estimate (eqn 2)
to characterize an overall averagé mortality, m,,(7),
for the mixed population (as estimated at time ¢) leads
to the expression:

N S 1t
my () = 1— {_Zl [rio(1 —mi)[]/‘; ”io} )

Thus defined, the behaviour of m,,(¢) as a function of
census interval, ¢, depends upon the distribution of
values of n, and m, In all cases, however, m,(f)
decreases as t increases unless m; is identical for all
subpopulations (i.e. is truly a ‘simple’ population).
This general result is proved in Appendix 1.

If time, ¢, is a continuous rather than a discrete
variable, then the definition of an overall average
mortality rate, 4,,(¢), analogous to eqn 8 for m,,(¢) is:

() = —(1/)1) IOge{i Mo exp(~l,-t)/i ni} ©

Again, as shown in Appendix 1, 4,(¢r) always
decreases as the census interval ¢ lengthens except in
the limiting case of a genuinely homogeneous popu-
lation (i.e. when all 4; are identical) whereupon 4,,(¢)
remains constant.

Theoretical determinants of changing rates

The general theorem that we have established is useful
but does not provide an intuitive feeling for the behav-
iour of m,(¢) in mixed populations other than proving
the expectation of monotonic decline. A clearer
insight into the behaviour of m,(f) is provided by
consideration of specific cases and examples. Exam-
ination of numerical solutions to eqn 8 (e.g. Fig. 1)
indicates that the severest artefact, in terms of oper-
ational significance, will occur when a fraction of the
population has a very much higher m; than the rest.
The phenomenon of apparent decline in m(f), if
adequately characterized, may provide useful infor-
mation about the sample population, serving essen-
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Fig.1 Three solutions to eqn8 are plotted against census
interval in order to indicate the behaviour of m,; (m)> = 2%
per year (at t = 1) for all three solutions. The line labelled 1
is the solution for a perfectly homogeneous population.
Curve 2 is a composite of twe populations: n,, = 0.8,
m, = 1% per year and n,, = 0.2, m, = 6% per year. Curve
3 is also composed of two populations : n,, = 0.95,
m; = 0.5% per year and n, 5 = 0.05, m, = 30% per year.
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tially as a measure of variation in life expectancies
that can be termed ‘dynamic diversity’.

If the variance in the statistical distribution of m;
values is not too large, an approximation to eqn 8 for
my(9), or eqn 9 for A,,(?) can be provided. For the
case of discrete intervals this approximation is

mu(t) & {mp+(t—1Do?/2(1 = {md)+ - (10)

Here {m) is the mean of the {m,} distribution, defined
by eqn A7 of Appendix 1, and ¢” is the variance,
defined in the usual way:

0= 3. plom—my) = (> —(m)? (1)

For continuous census intervals, the corresponding
approximation is:

Aat) = (A —30% 1+ -+ (12)

Here again, {1} is the mean and ¢ is the variance of
the {4;} distribution (as defined in Appendix 1 and
as the direct analogue of eqn 11 respectively). These
approximate results are established in Appendix 2.

Equations 10 and 12 demonstrate explicitly that
the overall average mortality rates estimated by the
methods considered are indeed time-independent con-
stants when derived for perfectly homogeneous popu-
lations when the variance, 62, is zero, along with all
higher moments of the distribution. For relatively
small values of the variance-to-mean ratio, 6°/{m),
the variance in the mortality rate distribution can be
estimated from the slope of the initial decrease in
my and A, with increasing census interval, ¢. Such
variation in mortality rates might be expected to be
related to diversity among life expectancies in the
sample population, and could prove a useful com-
munity characteristic in itself.

Explicitly, such estimates of the community-wide
variance in mortality rates can be obtained from eqns
10 and 12. For discrete census intervals,

6> ~ Amy (1) — muy (D] {1 — ma (DI 1), (13)
For continuous census intervals,
0% & 2AA.(0) — Al D)]/1. (12)

We emphasize that these approximate expressions are
based on neglect of all higher moments of the stat-
istical distribution in {m;} or {4;}. Note also that for
this derivation {m) = m,,(1).

An illustrative example can be given by accepting
the regression for mortality decline in timber trees in
Budongo, Uganda presented by Sheil (1995a). We
are unhappy about using dm,,/dt at t = 1 as there is
considerable uncertainty about the initial data points
(however m,y = 0.011A: %% thus  dm,/d =
—0.0037A1~"*?; so initial decrease at time 1 is there-
fore 0.0037 and since this is equivalent to
o’ 2(1 —<{m); 6% ~ 0.0037 x 2(1—0.011) per

year? & 0.0073 per year” or a standard deviation (SD)

of mortality rate of around 8% per year). We recog-
nize that the variance in mortality rate of the survivor
population will decrease with time, so that linear
approximations over long periods are likely to under-
estimate the variance of the original sample. However,
as we need sufficient census counts to make evaluation
meaningful, a compromise is required; thus we have
taken the more cautious though arbitrary approach,
which avoids using the ¢ = 1 data, by using the rates
at time £ = 3 and ¢ = 20 years (rates 2.2 and 1.2% per
year respectively): this provides, from eqn 13:

o2 & 2[0.022—0.012] [1—0.022}/(17—1) ~ 0.0012
per year” which is equivalent to a mortality rate SD
of x3.5% per year. A skewed distribution is implied
as the estimated magnitude of the SD for my,,’s is
greater than the value of m,, itself.

A consideration of recruitment

This analysis has focused on mortality, but a similar
theoretical time dependence can be shown for recruit-
ment. Intuitively this is clear, because by any con-
sistent method of assessment a steady-state popu-
lation would be expected to tend towards equal rates
for recruitment and mortality when a long enough
time period is considered (i.e. recruits = losses). How-
ever, the mathematical framework for unbiased
assessment is not well developed, and few published
figures account for the mortality of recruits that occur
between observations. Phillips et al. (1994) use mor-
tality in the lowest stem size class as a proxy for the
mortality rate of recruited stems: an approach not
considered here due to the circularity of explicitly
including biased estimates of mortality within the pro-
cedure for calculating recruitment and then dem-
onstrating that this too is biased. We will consider an
alternative approach.

To compute total new counts, N(f), among inter-
vals of unequal length, requires a simple differential
equation. Assuming the rate of recruitment is
constant, with each stem then having a constant prob-
ability of mortality per unit time, provides a simple
differential relationship:

dN,/dt = kA—N,. (15)

Here £ is the recruitment rate per unit of plot area 4,
and the instantaneous mortality rate is A per unit of
recruitment present (a rate independent of sample size
is defined by kA/N* where N* is the steady state
population). Initially, N(0) = 0; the count of new
recruits begins at 7 = 0.

Ineqn 15, the — AN, term corresponds to stems that
are newly recruited and subsequently lost within the
census interval, without ever being recorded. Such
‘lights which wink on and off while we are out of
the room’ are not counted directly in measures of
recruitment or mortality. Such uncounted losses are
allowed for in the earlier mortality calculations by
limiting consideration to the compounded loss of pre-
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counted stems. Uncounted recruits cannot be simi-
larly disregarded in assessments of recruitment rates
without introducing a serious bias over longer
measurement periods. So, unlike mortality, recruit-
ment rates even in homogeneous populations cannot
be estimated in a simple way, independently of time.
Unbiased estimates require assessment of both rate
constants k and 4. An analogous problem, relating to
the way estimates of species turnover depend on cen-
sus interval, for island bird communities, has been
provided previously (Diamond & May 1977).

Equation 15 can be integrated, to provide an
expression for N (1), the total number of new stems at
time 7 after the initial census:

N = (kA[A)(1—e™") (16)

This equation can be rearranged to express k as a
function of N(¢) and A. It will also provide 1 if N.(?)
and k are known.

In practice the only available information will be
N(f). We can however make progress if it is reason-
able to make assumptions about N¥, the asymptotic,
steady state value to which N,(¢) tends after
sufficiently long times have elapsed. By assuming a
steady state situation N* can be equated with N, or
the complete population count during any census.
From eqn 16 in the limit  — o0, so that N*, k and 1
are related by

N*=FkA/]. 17

Clearly, this steady state relation can only be used if
there are no long-term secular changes in recruitment
and/or mortality processes over the time period in
question i.e. if k£ and 4 are truly constant.

From eqns 16 and 17, we can obtain explicit
expressions for the mortality rate, 4, and for the
recruitment rate, &, in terms of the directly observable
quantities N(r) and N* (N, —» N*ast— co):

A= —1/HIn[1 -N/(5)/N*], (18
k= —(N*/4)In[1 —N,()/N*] (19)

Taking, as before, a heterogeneous system made up
of § distinct subpopulations, with recruitment and
mortality rates k;and A, (i = 1, 2,...S). We can apply
the above analysis to each subpopulation, and, when
combined, these distinct versions of eqns 16 and 17
provide

N.(1) = NF[l —exp (= 4] (0)

Nf being the steady-state population of sub-
population i. Equations 18 and 20 lead directly to
the recruitment-process analogue (of eqn9) for the
overall average mortality rate at time ¢, 1,,(?):

Aa(0) = —=(1/0)In [i N eXp(—/l,»l)/N*] @n

By exactly the same arguments used in Appendix 1,
we can show that 4,,(f) < (A1), for all time intervals,

t (with equality only when all ; are equal). From the
linearity of the basic relation of eqn 17, we likewise
have k,(f) < (k) for such ‘simple’ estimates of
recruitment rates.

Although the analysis of this section has been pre-
sented in the formulations of continuous census inter-
vals, the results also hold — as before —in formulations
with discrete census intervals.

Discussion

The common methods for calculating tropical forest
turnover rates — both mortality and recruitment — do
not provide unbiased estimates when applied to cen-
sus data from heterogeneous populations. These con-
clusions will apply to other fields where census data
are used to estimate rates. Our consideration of mixed
populations composed of simple subpopulations
attempts to address variation present in real com-
munities, but cannot claim to be fully realistic. Three
aspects of the model require further consideration:
(1) how different aspects of population heterogeneity
might influence rate estimates; (2) how violation of
our assumptions might occur and how this would be
recognized; and (3) what are the appropriate stat-
istical techniques needed to evaluate and critically
assess real census data.

That different forest tree species have different
mortalities at a common site is well recognized (e.g.
Primack e al. 1987; Manokaran & Kochummen 1987;
Hubbell & Foster 1990; Clark & Clark 1992; Burslem
& Whitmore, unpublished; Sheil, unpublished). Evi-
dence also supports the assertion that mixed tropical
forest tree populations, with individual stems exceed-
ing a defined minimum size (generally considered
10cm diameter at reference height), demonstrate a
mortality that does not significantly differ with size
(e.g. Lieberman e al. 1985; Swaine et al. 1987; Mano-
karan & Kochummen 1987; Swaine 1989; Condit et
al. 1993; Gentry & Terborgh 1990; Kohyama 1991;
Milton et al. 1994). Exceptions to this generalization
are Hubbell & Foster’s (1990) evidence for differ-
entially increased death of larger trees following
drought, and Mervart’s (1972) observation that mor-
tality in very large trees (trees over 6 feet girth) is
greater than for smaller stems, with his ‘medium large’
stem class (1-6 feet girth, i.e. 0.3-1.8 m circumference)
proving the most long lived on average. In neither
of these cases, however, is a statistical test of the
differences provided. Other reports of drought cre-
ating differential mortality between size classes
includes Hartshorn’s (1990) observation that drought
appears to impact smaller stem sizes selectively at La
Selva, Costa Rica and at Palcaz Valley, Peru. In Asia
however, drought appears often to have the greatest
impact on emergent stems as has been reported by
Tang & Chang (1979) for ridge top sites in peninsular
Malaysia, by Seth et al. (1960) for seasonal dipter-
ocarp forests in India, and by Leighton & Wirawan
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(1986) in eastern Borneo during the 1982-83
droughts. Canopy and emergent stems are often con-
sidered more vulnerable to drought conditions in tem-
perate forests (e.g. Liu & Muller 1993).

Higher mortality rates are commonly found in juv-
enile stems (diameter <10cm at reference height),
particularly in less shade-tolerant species (e.g. Connell
et al. 1984; Swaine 1989; Hubbell & Foster 1990;
Alvarez-Buyulla & Martinez-Ramos 1992; Clark &
Clark 1992) and are even higher in smaller seedlings
(e.g. Swaine & Hall 1986; Kitajima & Augspurger
1989). Such a differential, with mortality higher for
smaller stems, will also decrease turnover estimates
over time within a growing sample population.
Indeed, in all populations of stems defined by a mini-
mum size, longer observation periods become biased
towards a population characterized by greater aver-
age stem size. Additional concerns have been voiced
by Rankin-de-Merona er al. (1990) who suggest that
their turnover measures (actually an estimation of
average time for each stem to be replaced) ‘will vary
depending on the lower d.b.h. [diameter] limit used
and may not be reliable when the assumption of a
steady-state system is not met’.

There is good evidence that mortality rates within
species often change with stem size both in temperate
(e.g. Monserud 1976; Hamilton 1980, 1986; Har-
combe 1987; Busing & Wu 1990) and in tropical for-
ests (Hubbell & Foster 1990; Clark & Clark 1992;
Vanclay 1991) and such a formulation is common in
computer models (e.g. Vanclay 1989, 1991; Kohyama
1991). This is an interesting phenomenon as it implies
that the reported size independence of total mortality
in mixed tropical forests populations may be a com-
posite property, i.c. a product of the mortality diver-
sity considered in this paper. However developmental
change for individuals is not accommodated in our
analysis if the census interval allows time for stems to
change into subpopulations characterized by a mor-
tality rate ranked differently to their initial sub-
population, although this is unlikely to be a major
concern over shorter measurement periods.

The operational definition of the probabilities used
in our estimation models (i.e. as contained in the terms
m; in eqn8 and Ai in eqn9) within real populations
needs to be addressed. The probability of an indi-
vidual stem dying is not constant, nor is it independent
of its neighbouring stems. Localized competition for
limiting resources suggests that each individual stem
has its own dynamic probability of mortality. Sig-
nificant differentiation within a defined population
is a recognized reality; e.g. slow-growing stems are
significantly more likely to die than are other stems
of equivalent size (e.g. Swaine et al. 1987a,b), and
has been well characterized in temperate forests (c.g.
Monserud 1976; Hamilton 1980, 1986). It will be
interesting to discover how much of the variation in
mortalities can be attributed to individual differences,
as opposed to subpopulations defined by species and

size. It is notable that both the study populations in
which time dependent mortality has been identified
appear, at least superficially, to be relatively homo-
geneous, being composed of large African forest tree
species in both cases (Mervart 1972; Sheil 1995) and
much of the variation may be occurring at the level
of the individual.

An alternative interpretation of exponential popu-
lation decline can be suggested, by assuming only that
there is a stable tendency to lose a constant proportion
of the population over equal time intervals (not that
the individual probabilities of loss are constant and
equal). Accepting such a re-interpretation brings with
it the recognition of spatial and temporal auto-cor-
relation(s) and diverse individual behaviours, which
is more realistic; but considerably reduces the poten-
tial for statistical understanding and undermines the
ability to calculate confidence intervals for single-
sample turnover estimates. This reasoning implies a
need for adequate sample replication amongst sites
being evaluated.

The temporal fluctuations involved in mortality
will also have an influence. It is evident that different
species demonstrate varying vulnerabilities when
exposed to different environmental phenomena or
conditions (e.g. drought, wind, disease). In the case
of occasional ‘disturbance’ events the meaning of a
‘time-independent’ rate measure is unclear. The pres-
ence of ‘stochastic’ and ‘deterministic’ aspects to mor-
tality and recrnitment has not been adequately
addressed. It can be considered (e.g. Connell 1978)
that there exists a continuum from stable forest
environments (i.e. where catastrophic events are rare
and have little recognizable influence on the system’s
observed dynamics) to formations that are highly
influenced by catastrophic events (e.g. events such as
cyclones, Whitmore 1974). In theory, severe dis-
turbance events might be included in turnover assess-
ments if data were averaged over sufficiently long time
periods, but what period lengths are sufficient even in
relatively stable communities requires empirical deter-
mination.

Simulation modelling of tree populations with
explicit representation of individual stems, coupled
to census-based turnover analysis, may prove useful.
Such census-simulations, combined with detailed stat-
istical evaluation, could assist in developing better
strategies for measuring and comparing ficld data.
This approach would however require a careful con-
sideration of the adequacy of the given model to rep-
resent the real subtleties of mortality phenomena, and
this is unfortunately far from clear.

Computer simulation models of forest dynamics
vary considerably in their treatment of mortality (e.g.
Hartshorn 1975, Ek & Monserud 1979; Hamilton
1980; Vanclay 1989, 1991, 1994). Even in the com-
parably well advanced models of mixed temperate
forests it can be shown that a great deal of the vari-
ation in model behaviour is due to different
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approaches to mortality. Stage & Renner (1988) for
example compared models for mixed conifer stands
in the Rocky Mountains (USA) and found that over
three-quarters of the variation in predicted stand vol-
ume between models was specifically due to the
different treatments of mortality within the models.
In the case of tropical forests this ambiguity is com-
pounded by the difficulty in gaining sufficient data to
justify a particular functional form and for adequately
calibrating each species.

Among the best characterized individual-based
forest models are the gap models (the numerous deri-
vations of the JABOWA and FORET models) which
were comprehensively reviewed by Urban & Shugart
(1992). It is instructive to consider how well these
ecologically conceived models manage mortality, and
Urban & Shugart (1992) illustrate this with reference
to their ZELIG model which uses two different
relations, one age-related and one stress related: ‘It is
assumed that about 1% of individuals might survive
to maximum age; the further assumption that this
mortality is constant with age yields an annual prob-
ability of mortality on the order of 1-2% per year. A
second source of mortality is due to loss of vigour,
and is invoked when a tree fails to meet a minimal-
growth threshold. This rate of ‘stress’ mortality is an
order of magnitude greater than the ambient rate: it
is assumed that a tree might survive 10 years under
stress, which yields an annual stress mortality rate of
0.369%. Slow-growth mortality is most pronounced
in very small and very large trees. This implemen-
tation is somewhat arbitrary, but reproduces the U-
shaped mortality schedule observed for trees (e.g.
Harcombe 1987). Importantly, because species differ
in their inherent growth rates and tolerance to
environmental stresses (suppression, drought), they
may exhibit very different mortality schedules despite
having the same basic implementation.” So even in
the best current models Urban & Shugart (1992) find
it necessary to consider the implementation of mor-
tality ‘somewhat arbitrary’.

The best calibrated models of mortality for species
rich tropical forests are probably those provided by
Vanclay (1989, 1991) for the north Queensland rain
forests. In his 1991 paper he used a logit formulation
with d.b.h., log( d.b.h.), and (overtopping basal area/
total basal area)® as explanatory variables and used
64 369 tree observations with 2781 mortalities to class-
ify 400 tree species into 10 groups each of which has
a significantly different mortality. He also dem-
onstrated that for six of these groupings further
explanatory power was provided by the additional
inclusion of at least one of basal area, log basal area,
or asite index factor into the formulation (see Vanclay
1991). He stresses however that for the majority of
species data are insufficient to allow adequate charac-
terization and calibration. Examination of models
reveals a great deal of variation in the treatment of
mortality. In all cases however it is recognized that

populations are not simple and homogeneous, and
much more study will be required to examine the
magnitude and significance of this phenomenon.

In short, the meaning of published turnover rates
must be reconsidered. We have shown how artefacts
of estimation over varying census periods may
confound, or perhaps cause, much of the variation
currently inferred from demographic tropical forest
studies. Techniques for calculating and comparing
turnover values can be improved by better metho-
dological standardization (e.g. consistent time inter-
vals) or by an explicit calibration of the variation in
mortality within sample populations. Only two stud-
ies so far provide support for the artefact hypothesis,
but it is hoped that this account will encourage further
case examples to be identified. Several very large and
intensively evaluated monitoring plots have recently
been established for ecological studies (Hubbell &
Foster 1992; Condit 1995). These studies may provide
some of the data needed to examine real turnover in
heterogeneous populations in much more detail than
is currently possible.

Evaluation requires more sophisticated analysis
than has conventionally been undertaken. Con-
sideration suggests that similar problems will effect
any estimation procedure which cannot account for
all the rate variation within a study population as this
will cause census period dependence. The stan-
dardization of census intervals is strongly rec-
ommended.
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Appendix 1

Proof of census interval dependence. We define p; as
the proportion of the original population represented
by species {(or subpopulation) i:

s
b= nio/z Rip- (A1)
i=1

Equation 8 can thus be re-written:
N 1/t
my(f) = 1— [Z pi(1 —mr)t} (A2)
i=1

[0 <m; < 1 for all m}.

Likewise for continuous time, eqn 6 can be re-written
for a composite population as

1) = (1/9)In [Z prexp (—A,-t)} &3)

To prove that m,(f) and 1,(¢) decline mon-
otonically with increasing ¢, we use Jensen’s inequality:

f(; “iPi) < ; o; £ (p:) (A4)

(Hofbauer & Sigmund 1988 equation (3.13), and see
Nowak & May 1992). The equality applies only when
all p; are equal. This general result holds provided the
following requirements are met:

(a) «; are arbitrary positive numbers with Zo;, = 1
(b) f(-)is a strictly convex function on some interval
I, and

(c) all p; lie in {I}.

It will be sufficient to prove that m,(¢) is less than
or equal to the statistical mean of all m, ie.
mu(f) < {m), for all £ > 0. As this is general for any
later time ¢, we can then show that
Mgt > t') < my () by redefining ¢ as the interval
t—¢ and noting that m, () < {m) implies
My (1) < {m"y (where {m") is the statistical mean of
m; in the survivor population at time ¢), thus dem-
onstrating that m,,(7) shows monotonic decline with
time (that is d[m,(9)]/ds < 0).

The following statement can be shown to be a
specific case of Jensen’s inequality:

; pl—m) = [; (1~ m:):l (A5)

Here a,, f, and p; of A4 have been interpreted as:

(a) o;— p; p;is real, positive and Lp,= 1;

(b) f(x) = X, which is a convex function of x for all
t>1;

(c) and p; = (1—m,), which implies that indeed
0 < p; < 1.Using eqn A2 for m,[f), we can re-
write AS as

Lma(®) > 3, p(1—m) (A6)

The mean mortality rate, {m}, is defined in the usual
way as

(my = ; pimy (A7)

Hence A6 can be rewritten as
my(f) < {m), (A8)

for all . The equality pertains only if all m, are ident-
ical, m; = {m).

As noted above, A8 is sufficient to establish that
m,,(t) is a monotonic decreasing function of ¢, which
is the major result asserted in the main text.

The corresponding result for continuous time is
similarly established from Jensen’s inequality. Again
we identify the «; of A4 with p, but we differ from
the discrete time case by now identifying p; = A; and
J(x) = exp (—x1), which is convex for positive x and ¢.
The above analysis can be repeated, mutatis mutandis,
to show that

Aa(t) < <4, (A9)

for all ¢ > 0, and again equality pertains only if all 4;
are identical. Here (1) is defined by analogy with
{m) , as
S
Ay =), pids (A10)
i=1

and 4,,(?) is defined by eqn 9 in the main text.
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Appendix 2

An approximation for the determinants of changing
estimates. In this Appendix we outline how the
approximate expressions stated in eqns 10 and 12 are
derived from the exact eqns 8 and 9.

We first write

m; = {my +Am,, (BD)
Here {m) is defined by A7, and we have introduced
Am; = m—{m). (B2)

We now take the version of eqn § presented as equa-
tion (A2) in Appendix 1, and use eqn Bl to rewrite it
as

S 1/t
my(t) = 1—(1—-<{m)) {; pll—Amy(1— <m>)]’}
(B3)

The terms in the RHS of eqn B3 may be expanded as
a Taylor series:

(1—x) = 1—tx+Ht—Dx* 2+ 0x, (B4

where x = Am,/(1 — <m>)., Performing the sum in eqn
B3, we arrive at

ma(t) & 1= (1= m) [1+t(t—1)a?/2(1 - {m))?
+O0(Amy1' (BS)

This expression reduces simply to eqn 10 of the main
text. Note that we have neglected terms of the order
(Am,)* and higher; this corresponds to ignoring the
skewness and higher moments of the {m,} dis-
tribution.

The process of deriving eqn 12 as an approximation
to eqn9, when time is taken as a continuous variable,
proceeds along lines parallel to those above.
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